Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution.

نویسندگان

  • De Cai
  • Zhongfei Li
  • Yao Li
  • Zhendong Guo
  • Sung-Liang Chen
چکیده

Acoustic-resolution photoacoustic microscopy (ARPAM) plays an important role in studying the microcirculation system of biological tissues with deep penetration. High lateral resolution of ARPAM is achieved by using a high numerical aperture acoustic transducer. The deteriorated lateral resolution in the out-of-focus region can be alleviated by synthetic aperture focusing technique (SAFT). Previously, we reported a three-dimensional (3D) deconvolution ARPAM to improve both lateral and axial resolutions in the focus region. In this study, we present our extension of resolution enhancement to the out-of-focus region based on two-dimensional SAFT combined with the 3D deconvolution (SAFT+Deconv). In both the focus and out-of-focus regions, depth-independent lateral resolution provided by SAFT, together with inherently depth-independent axial resolution, ensures a depth-independent point spread function for 3D deconvolution algorithm. Imaging of 10 μm polymer beads shows that SAFT+Deconv ARPAM improves the -6 dB lateral resolutions from 65-700 μm to 20-29 μm, and the -6 dB axial resolutions from 35-42 μm to 12-19 μm in an extended depth of focus (DOF) of ∼2 mm. The signal-to-noise ratio is also increased by 6-30 dB. The resolution enhancement in three dimensions is validated by in vivo imaging of a mouse's dorsal subcutaneous microvasculature. Our results suggest that SAFT+Deconv ARPAM may allow fine spatial resolution with deep penetration and extended DOF for biomedical photoacoustic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved in vivo photoacoustic microscopy based on a virtual-detector concept.

Recently an in vivo high-resolution backward-mode photoacoustic microscope was developed that shows potential for applications in dermatology and related cancer research. However, the limited depth of focus of the large-numerical-aperture (NA) ultrasonic lens employed in this system causes the image quality to deteriorate significantly in the out-of-focus region. To solve this problem, we devis...

متن کامل

Photoacoustic microscopy by scanning mirror-based synthetic aperture focusing technique

Photoacoustic imaging with a synthetic aperture focusing technique (SAFT) is an effective method to improve the lateral resolution for out-of-focus regions in scanning microscopy systems, which commonly require a decent motorized scanning stage for a lateral scan of a transducer to obtain a cross-sectional image. In this study, we propose and test a photoacoustic imaging system with a scanning ...

متن کامل

In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy.

Photoacoustic microscopy was developed to achieve volumetric imaging of the anatomy and functions of the subcutaneous microvasculature in both small animals and humans in vivo with high spatial resolution and high signal-to-background ratio. By following the skin contour in raster scanning, the ultrasonic transducer maintains focusing in the region of interest. Furthermore, off-focus lateral re...

متن کامل

Remote Contactless Photoacoustic Imaging for Non Destructive Testing

We report on (to our knowledge) the first remote contactless photoacoustic measurements on semitransparent polymer samples. Samples consisting of a semitransparent polymer surface, black silicon glue and cast resin were produced. Measurements were done by illuminating the samples with short electromagnetic pulses of infrared radiation and detecting the generated ultrasound waves with a Fabry-Pé...

متن کامل

Multi-view optical resolution photoacoustic microscopy.

Optical resolution photoacoustic microscopy (OR-PAM), while providing high lateral resolution, has been limited by its relatively poor acoustically determined axial resolution. Although this limitation has been tackled in recent works by using either broadband acoustic detection or nonlinear photoacoustic effects, a flexible solution with three dimensional optical resolution in reflection mode ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2017